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1. Introduction
By a (p,q) graph G, we mean a
graph G = (V,E) with |V| =p and |E| = q.
There is a survey in The Electronic journal of
Combinatorics for graph labelling . Which contains
various papers which consists of applications and
various types of labeling which is updated every year.
Lo[4] derived a necessary condition for a graph to be
edge graceful. In [1] Gayathri define a labeling called
strong edge graceful labeling.
A (p,q) graph G is said to have a strong
edge-graceful labeling (SEGL) if there exists an

injection f from the edge set to the set {1,2, ..., [37‘1]}

so that the induced mapping f* from the vertex
set to {0,1,2,..,2p — 1} defined by a f*(x)=
Y{f(xy)lxy € E(G)}(mod 2p) are distinct. A graph
G is said to be a strong edge-graceful graph (SEGG)
if it admits a strong edge-graceful labeling. Here , [x]
denotes the integer part of x.

In[2]Strong edge graceful labeling in the
context of a switching of a vertex and, In [3] strong
edge—graceful labeling of shadow and splitting graph
has been studied. In this paper we discuss strong
edge—graceful labeling of strong edge-graceful
labeling of disconnected graphs

2. Strong edge-graceful labeling.
Theorem 2.1

The graph B U B, (m,n = 3) is a strong
edge-graceful graph.
Proof

Let {v;,v},u; |1 <i<m1<j<n} be the
vertices and {e,ej|1<i<2m-1,1<j<n-1}
be the edges of B} U B, as shown in Figure 2.1.
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Figure 2.1: Ordinary labeling of P}, u P,,

Case 1: m < n (except for P} U Pg)

We first label the edges as follows:

Define f: E(P U P) = (1.2, .., 2]} by

fle) =1, 1<i<2m-1,i#+m m-1
flem) =m—1; f(ep-1) =2m+1

fley) =m;

fle)=i+2m 2<i<n—-2 (n=4)

For m,n even (or) m odd and n odd, n # 2m + 1 (or)
modd, n = 2m (or) m even, n odd,

n ¥m+12m+1,m+3

fle,_)=2m+n-1

For m odd, n even and n # 2m (or) m odd, n even
n=2m+1(or)ymeven, noddandn =m+ 1,m+
3,2m+1

flep_) =2m+n

Then the induced vertex labels are:
ftw)=i+2m-1, 1<i<m-2

fH(m-1) = 4m; ft(v,) =3m
frw) =2m—i, 1<i<m-1
frp) =m-1, fr(u) =m

ft(u,) =3m+2

ffw)=2i+4m—-1, 3<i<n-2(Mn=5)
For m,n even (or) m odd and n odd, n #2m +1
(or) m odd, n =2m (or) m even, nodd, n #m+
1,Zm+1,m+3

ftup_y) =4m+2n-3

2600


mailto:maduraigayathri@gmail.com
mailto:ajoelsuresh@gmail.com

International Journal of Research in Advent Technology, Vol.6, N0.10, October 2018
E-ISSN: 2321-9637
Available online at www.ijrat.org

ffu) =2m+n—-1

For m odd, n even, and n # 2m (or) m odd, n even
n=2m+1(or)meven,noddandn =m+1,m+
3,2m+1

ftup_y) =4m+2n-2

ft(u,) =2m+n

Case2: n<m

fle)) =1, 1<i<n-2
, _(mn neven

fleny) = {n -1 n odd

fle)=i+n, 1<i<2m-1

Then the induced vertex labels are:

fr(u) =2i—-1, 1<i<n-2

2n—2, neven
fram-D={5""

n 3 %gggn

fr(un) = {n -1, nodd
f*(vy) =2m+2n
ffv)=2m+3n+i—-1,2<i<m-1
ff(v) =2m+2n—-1
frw) =2m+n—i
Case3: m=3,n=6

Strong edge-graceful labeling of P} U Py is
shown in Figure 2.2.

1<i<m

3 8 9 10 13

Figure 2.2: SEGL of P} U P

Clearly, all vertex labels are distinct. Hence, the above
defined edge labeling function induces the vertex
labeling function
ft:v(Bt up,) - {0,1,2,..,2p — 1}. Hence, f isa
strong edge-graceful labeling.

Thus, the graph B;t U B, is a strong edge-
graceful graph for all m,n = 3.

Ilustration 2.2
Strong edge-graceful labeling of P} U Py,
13 1 w9 8 6
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Figure 2.3: SEGL of P¥ U P,

1l 152

Theorem 2.3
The graph B} U C,, (m,n = 3) is a strong
edge-graceful graph.

Proof

Let {u;,v,vj[1<i<n1<j<m} be the
vertices and  {e/,e;| 1<i<n1<j<2m—1}be
the edges of B} U C,, as shown in Figure 2.4.
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Figure 2.4: Ordinary labeling of P}, U C,
Casel: m<n(m=>3n=>4)
We first label the edges as follows:
Define f: E(P U C,) > {12, ..., [22]3 by
fle) =1, 1<i<2m-1,i#+m m-1
flem)=m—1; f(ep-1) =2m+1
fley) =m;
fle)=i+2m 2<i<n-2
Form,n even, m = n (or) m,nodd, m = n (or) m
even n odd
fle,_1) =2m+n—-1
Formodd,neven (or)m =n
flep_1) =2m+n
flej))=2m+n+1
Form,neven,m #n (or) m,nodd, m #n
fley) =2m+n
For m even and n odd
flej)=2m+n+1
Then the induced vertex labels are:
fflvp)=i+2m-1, 1<i<m-2
fH(Wm_1) = 4m; fH(p) =3m;
) =2m—i, 1<ism-1
fflom) =m—1; fruy) =3m+2
ffu)=4m+2i—1, 3<i<n-2
Form,neven (or)m,noddand m # n
ft(u) =3m+mn;
ftup_1) =4m+2n-3
ffu,) =4m+2n—-1
Form even,nodd (or)m =n
ft(u) =3m+n+1;
ftup_1) =4m+2n-3
ffun) =0
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For m odd, n even
ftu) =3m+n+1;
ftup_y) =4m+2n-2

fflup) =1
Case2: n<mm=3m=4)
fle)) =1, 1<i<n-2
, m neven
f(e"‘l)_{n—l, n odd
N _ [2m+ 2n, nodd
flen) = {n— 1 n even

fle)=i+n, 1<i<2m-1
Then the induced vertex labels are:

ft(v) =2m+2n
ftv)=2m+3n+i—-12<i<m-1
ftvp) =2m+2n-1

ffw)=2m+n—i, 1<i<m
A
frw) =2i-1, 2<i<n-2
fram)={n 2 e
@) = (G sn 1, medd

Case3: m=n=3
Strong edge-graceful labeling of P5" U C5 is shown in
Figure 2.5.
13
5 4 2

6 1 127 9 8 0

Figure 2.5: SEGL of P§ U (5

Clearly, all vertex labels are distinct. Hence, the above
defined edge labeling function induces the vertex
labeling function
ft:v(Btuc,) - {01,.2,..2p—1}. Hence, f isa
strong edge-graceful labeling.

Thus, the graph B} U C, is a strong edge-
graceful graph for all m,n > 3.

Ilustration 2.4
Strong edge-graceful labeling of P} U Cg,

1 10 9 8 7 5

21132 143 154 4B
25
6 19
20 0
14 17
29 33
15 16

Figure 2.6: SEGL of P} U C,

Theorem 2.5

The graph C;f U C,,, ,(n, m = 3) isastrong
edge-graceful graph.
Proof

Let {u;,uj,vj|1<i<n1<j<m} be the
vertices and f{e/,e;|1<i<m1<j<2n} be the
edges of Cruc,, as shown in Figure 2.7. We
note that V(ICruC)l=2n+m and
|E(Cy UCp)|=2n+m.

Figure 2.7: Ordinary labeling of C;} U C,,
We first label the edges of C;f U C,, as follows:

Define f: E(Cy U Cp) = {1,2, ..., [37‘]]} by

fle)=i+1, 1<i<n
f(en+1) =1
fle))=3n—-i+2, n+2<i<2n
fle)) =i+ 2n, 1<i<m-1
f(e’)={m+2n’ modd

m m+2n+1, meven

Then the induced vertex labels are:

frw) =i+1, 1<i<n

ft(u)=2n+3
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fru) =4n—i+4,
ft(u,) =2n+4
. _{4n+m+1,
frv) = {4n +m+2, meven
ft(v)=4n+2i—-1, 2<i<m-1
" _(4n+2m—1, modd
frlom) = {0, meven
Clearly, all vertex labels are distinct. Hence, the above
defined edge labeling function induces the vertex
labeling function
ftvctuc,) -»{0,1,2,..,2p —1}. Hence, f isa
strong edge-graceful labeling.
Thus, the graph C,f U C,, is a strong edge-
graceful graph for all n,mz2 3.
Ilustration 2.6

Strong edge-graceful labeling of Cf U C;
2

2<is<n-1

modd

2
19 13
15 12

1
7\’ ) 3 37 7
7 / 3 ) /
16 %Y 18/ \ 14
i \ { \
f ju } 2
/

8 Be
'3 54 \ j 5
. 7
GU/G N 4oy /
5 u \\/31
10
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Figure 2.8: SEGL of C{ U C,

Theorem 2.7
Thegraph B UBf ,(m=4,n=>3)isa

strong edge-graceful graph.
Proof
Let {u;,uf,v;,vj[1 <i<m,1<j<n}bethe
vertices and {e;, e/| 1<i<2m—-1,1<j<2n—1} be
the edges of P} U B;f as shown in Figure 2.9.

U U, U e U

m-1

Ul g ﬂz e, l.,13 u

Vi ei vV, e.2 Vs V1V,

Figure 2.9: Ordinary labeling of P}, u P}

Without loss of generality, let m > n.
We first label the edges as follows:

Define f: E(Py U B - {12, .., [ 2]} by
fle) =1, 1<i<m-1
flem) =3(m+n)—4
fle)=2n+i-1,
flep)=2n+2m—1
fle))=i—1+m,
flen) =3(m+n)-3;
flezp-1) =m+n—-1

m+1<i<2m-1

2<i<2n-2, i#n

Then the induced vertex labels are:
ftu)=i+2n+2m-2,
ff(u,) =4m+3n—-5
ffw)=2n+2m—-i-1,
frup) =3(m+n)—4;
ft(vy)) =3m+3n-2
ft(wvy) =4n+4m -3
fr(w) =i+2n+3m-—4,
ff(v,) =4m+4n-5;
ffv)=m+n-1
ffvp)=2n+m—-i—1,
f*(v) =3(m+n) -3

1<i<m-1

1<ism-1

3<i<n-—-1
2<i<n-1

Clearly, all vertex labels are distinct. Hence, the above
defined edge labeling function induces the vertex
labeling function
ft:v(Bt upt) -{0,1,2,...,.2p — 1}. Hence, f isa
strong edge-graceful labeling.

Thus, the graph Bt U B} is a strong edge-
graceful graph for all m=4,n2=>3.

Ilustration 2.8
Strong edge-graceful labeling of P} U P

22 21 20 19 18 32

22 21 20 19 18 32

B L w2 53 4 g5 3

BT o»8 p9 g 04
Figure 2.10: SEGL of P{ U P{

Theorem 2.9
The graph B U C;f, (n,m = 3) is a strong
edge-graceful graph.

Proof

Let {ui,u{,vj,vﬂl <i<m,1<j<n}be
the vertices and {e;, ef/|1<i<2m—-1,1<j<
2n} be the edges of B;: U C;f as shown in Figure 2.11.

2603



International Journal of Research in Advent Technology, Vol.6, N0.10, October 2018
E-ISSN: 2321-9637
Available online at www.ijrat.org

U, U, U, ' ma Uy
Com1 Bama (Bams [t [Cna Jem
. ' o * gt
ul el UZ ez us (RN um—”i_l um

- 0"2

*

Figure 2.11: Ordinary labeling of P}, U C}

We first label the edges as follows:
Define f: E(Py U G > {12, ..., [2]} by

fled =1, 1<is<m-1
f(em) =3(m+n)—4

fle) =2n+i, m+1<i<2m-1
fler) =m;

fle;) =2n+2m

fle)=i+m—-2, 3<i<2n—-2,i#n+1

f(er’1+1) = 3(5” -l-l-nl) -3
! n )

f(eZn—l) - {ZTL +m— 3,

fleg)=m+n—1

Then the induced vertex labels are:

ffw) =2n+2m+i—1,

ft(uy) =4m+3n—->5

ff@w) =2n+2m—i

ft(u,) =3m+3n—4;

ft(vy))=4m+3n—-1

m=3
m+3

1<i<m-1

1<i<m-1

in+4m-1 m=3

+ _ ’

f (”2)‘{4n+4m—2, m#3
ff(v)=2n+3m+i-4, 3<i<n-1
. _(4n+5m -5 m =34
f(””)‘{m—s m=5
ffvp)=m+n-1

sy _ 2n4+m—2, m=3
f(vz)_{2n+m—2 m=3

ffw)=2n+3m—-i—1,
f*(v,) =3m+3n-3,
Clearly, all vertex labels are distinct. Hence, the above
defined edge labeling function induces the vertex
labeling function

3<i<n-1

frvEiuehH -{0,12,..,2p—1}. Hence, fisa
strong edge-graceful labeling.
Thus, the graph B} U C;f is a strong edge-
graceful graph forall m,n >3
Illustration 2.10
Strong edge-graceful labeling of P U C;f
B

B 2 A N R 1 5 0
3 |2 |a |2 |2 4 3

u 1 52 53 g4 5

Figure 2.12: SEGL of P£ u C%

Theorem 2.11
The graph (K, © C,) U (K, © Cp),(n = 3) s
a strong edge-graceful graph.
Proof
Let{e;,e/ll <i<2n+1}and {u;,v;| 1<
i < 2n} be the edges and the vertices of (K, © C,) U
(K, ©® C,) asshown in Figure 2.13.

n+3

Figure 2.13: Ordinary labeling of
K,©OC,UK, OC,
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We first label the edges as follows:
Define f:E(K; O CLU (K, OC)) —

3
{12,...[2]} by
fle) =1,

f(e)) = 2i+ 2n,
fleps) =4n+2
fle)) =2i—1, n+2<i<2n+1
Then the induced vertex labels are:

ffuw) =2n+2;
f+(ui) =2i—1,

[ nyy) =4n+4
fru) =2i+1,
ff(v)=2n+4
fr(w) =4i+4n-2,
fr*(ps1) =2n+6
fr(w) = 4i,

fH(wa) =0

Clearly, all vertex labels are distinct. Hence, the above
defined edge labeling function induces the vertex
labeling function

fHV(K,OC)U K, ©C))~{01,2,..,2p —
1}. Hence, f is a strong edge-graceful labeling.

Thus, the graph (K, © C,,) U (K, © C,) isa
strong edge-graceful graph for all n > 3.

1<i<2n+1
1<i<n

2<i<n
n+2<i<?2n
2<i<n

n+2<i<2n-1

Illustration 2.12
SEGL of (K, © Cy) U (K, © Cy)
8

19

Figure 2.14: SEGL of K, ©® C5 UK, © Cs

Theorem 2.13

The graph F, U F, , (n = 3) is a strong edge-
graceful graph.
Proof

Let {fw,v,up vi|l1 <i<n} and
{e;, e{/|1 <i < 2n— 1} be the vertices and the edges
of F, UF, as shown in Figure 2.15. We note that
V(F,UE)| =2n+2and |E(E, UE)| = 4n — 2.

Figure 2.15: Ordinary labeling of F,, U F,,
Case1l: n isodd (n > 7)
We first label the edges as follows:

Define f:E(F, UE,) — {1,2, ..., [%q]} by

Fori<is<n-1

i+1
> iodd
fled=1g,_i+8 ,
f, L even
_(4n+4, ifn+11
f(e”)_{4n+5, ifn=11
Forn+1<i<2n-1
6n+11—i _
— i odd
fled =94 2n-2 ,
— i even
Fori<i<n-1
n+i
> i odd
fled=3m—i+9 ,
— i even
fle;)=4n+9
Forn+1<i<2n-1
n+10—i _
— iodd
fled =14n+it1 _
— i even
Then the induced vertex labels are:
1 if n=11
+ — )
f (”)‘{0, if n#11
Fori<i<n-1
dn+i+13 .
— iodd
+ ) =
frud =9 4n i -2 ,
_ i even
2
n+9
CH ifn=+11
+ —
frn) =9 70+ 11
ifn=11

>
ftfw) =5
ft(vp)=3n+6

For2<i<n-1
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Sn+12+i .
— i odd
+ . =
f (vl) 3n _ l _ 1 ]
T' 1 even
ft(v,) =3n+10
Case2: n iseven (n = 6)
Fori<is<n-1
i+1
> i odd
fled=9gn_i+8 ,
T' 1 even
Forn<i<2n—-1landi#2n-2
6n—i+9 _
— iodd
fle) = 2n+i ]
> i even
f(eZn—z) =2n+2
Fori1<i<2n-1
n—i+9 .
— iodd
f(ei) = n +l .
> i even
Then the induced vertex labels are:
fr) = 3;

ffu) =2n+6;
For3<i<n-1

fr(uy) =2n+2

in+i+11

> , i odd
+ —
f (ui) - 4-n—L '
> i even
fr(uy) =2n; ftw)=0
ft(vy) =2n+5;
frw) =2
For3<i<n-1
Sn+i+9 .
— i odd
+ . =
Frwd =43, 542 ,
— i even
frv) =1

Case3: n=3,4,5
Strong edge-graceful labeling of F; U Fj,
F, U F, and Fs U F; are shown in [Figures 7.16-Figure
2.18] respectively.
7 10

B3 1 4 15§ 5 2 3 U g
Figure 2.16: SEGL of F3 U F5

M

0151915204 92318156013
Flgure 2.17: SEGL of F, U F,

A A

823]_8272222 362120452023

Figure 2.88: SEGL of F5 U Fg

Clearly, all vertex labels are distinct. Hence, the above
defined edge labeling function induces the vertex
labeling function f*:V(E, UE,) - {0,1,2,...,.2p — 1}.
Hence, f is a strong edge-graceful labeling.

Thus, the graph F, U E, is a strong edge-
graceful graph for all n > 3.
Ilustration 2.14

Strong edge-graceful labeling of Fg U Fg and
F, U F, are shown in Figure 2.29.

A

Bl uln2pdpdn TB94dnAgs pBy
Figure 2.19: SEGL of Fg U F

Theorem 2.15

The graph Ky ,, U K, ,, of odd order p = 9 is
a strong edge-graceful graph.
Proof

Let{vo,vi,vé,vﬂl <i<m1<j<n}be
the verticesand {e;, /|1 <i<m, 1<j<n}be
the edges of K, ,,, U K; ,, as shown in Figure 2.20.
We note that P = |V (Kym UKy )| =m+n+2and
V=|E(Kym UKy )| =m+n.
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Figure 2.20: Ordinary labeling of K1 , U K, ,,

Casel: p>9

The graph K;,, U K; ,, is of odd order only if
either m is even end n is odd or vice-versa. With loss
of generality, let m be odd and n be even.

Now consider the Diophantine equation
X1 + x, = 2p and the solution of the equations are of
the form (¢, 2p — t) where

p7+7 <t < p — 1, the number of pairs of solutions are

p=7

With these pair of solutions, label the edges
fe;:4<i<m}of K;,andtheedges{e; : 3 <i <
n} of K, ,, by the coordinates of the pairs in any order
so that adjacent edges receive the coordinates of the
pair.
Now we label the remaining edges as follows:

fler) =1; fey) =2;
f(e3) =5
fler) =4 fley) =3
Then the induced vertex labels are:
() = 8; frwy) =7

and all the pendant vertices will receive labels of the
edges with which they are incident and they are
distinct.
Case2:n=4m=3

Strong edge-graceful labeling of K; 3 U K; 4
is shown in Figure 2.21.
Clearly, all vertex labels are distinct.

9 7

1 2 6 4 3 8 10

Figure 2.21: SEGL of K13 U K1 4
Hence, K; ., U K ,, is a strong edge-graceful graph for
p=09.
Illustration 2.16

Strong edge-graceful labeling of K; 5 U Ky ¢
and K; 3 U Ky g are shown in Figure 2.33.

1\15 \12\ 14

1 2 5 \10\16 4 3

1 2 5 0% 4 3 1 5 12 U
Figure 2.22: SEGL of K15 U K4 ¢

Theorem 2.17

The graph B, , U B, ,, is a strong edge-
graceful graph for all m,n = 3.
Proof
Let{u, v, u, v, w, vy, uj, v;|1 <i<ml1<j<
n} and {el-,ej’, a;, a]’-,a, e |1 <i<m, 1<j<n}be
the vertices and the edges of By, ,, U By, ,, as shown in
Figure 2.23.

Figure 2.23: Ordinary labeling of B, , U By, 5,

Now consider the Diophantine equation
X1 + x, = 2p and the solution of the equation are of
the form (¢, 2p — t) where

’%6 <t < p — 1, the number of pairs of solutions are
p=6

2
Case 1: mis odd and n is even (or) n is odd, m is

even

Without loss of generality, assume m is even
or nis odd. With ’%6 pairs of solution, we label the
edges {e;:4 <i<mj {fej:2<i<n}and
{apaj|1 <i<m,2<j<n} by the coordinates of
the pairs in any order so that adjacent edges receive

the coordinates of the pair.
Now we label the remaining edges as follows:

fleD =1 fle)) =5; f(a) = 4;
flap) =3
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Then the induced vertex labels are:
fr=1; frw) =6,
ffw) =7

and all the pendant vertices will receive labels of the
edges with which they are incident and they are
distinct.

Case 2: Both m and n are odd

With pT_é pairs of solutions, we label the
edges {el-, ej’,ai, aJ’- |2 <i<m,2<i<n}bythe
coordinates of the pairs in any order so that adjacent

edges receive the coordinates of the pair.
Now, we label the remaining edges as follows:

ffw) =4

fler) =9; fle)=1; fle1) =2;
f(a)) =5; fla) =3; fla) =4
Then the induced vertex labels are:

frw) =10; f*(w)=3; frw)=8;
frw)=7

and all the pendant vertices will receive labels of the
edges with which they are incident and they are
distinct.
Case 3: m and n both are even and p > 16

In pT_G pairs of solutions, exclude the pair
(’%6 ,?) and we label the edges {e;, a;,
ej,a; |1 <i<m,3 <j <n}bythe coordinates of
pairs in any order so that the adjacent edges receive
the coordinates of the pair.
Now, we label the remaining edges as follows:

fle)=1; flep) =4 flez) =5;
fla) =2; f(a}) =3; flay) =6
Then the induced vertex labels are:

ffw =1; ftrw)=10; f*@W) =2
ff)=11

and all the pendant vertices will receive labels of the
edges with which they are incident and they are
distinct.
Case 4: m and n bothevenand p < 16

The only possibility of this case is B,, U B, ,
and the strong edge-graceful labeling of B, , U B, , is
shown in Figure 2.24.
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Figure 2.24: SEGL of B, U B, ,
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Illustration 2.18
Strong edge-graceful labeling Bs s U Bs 5
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Figure 2.25: SEGL of Bs s U Bs s
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3. CONCLUSION

In this paper two same or different family of
disconnection graphs has been discussed. Further this
leads to the open study about how, more than two
disconnected graphs behave.
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